960 research outputs found

    Local control of Hamiltonian chaos

    Full text link
    We review a method of control for Hamiltonian systems which is able to create smooth invariant tori. This method of control is based on an apt modification of the perturbation which is small and localized in phase space

    Perturbation Theory and Control in Classical or Quantum Mechanics by an Inversion Formula

    Full text link
    We consider a perturbation of an ``integrable'' Hamiltonian and give an expression for the canonical or unitary transformation which ``simplifies'' this perturbed system. The problem is to invert a functional defined on the Lie- algebra of observables. We give a bound for the perturbation in order to solve this inversion. And apply this result to a particular case of the control theory, as a first example, and to the ``quantum adiabatic transformation'', as another example.Comment: Version 8.0. 26 pages, Latex2e, final version published in J. Phys.

    Controlling chaos in area-preserving maps

    Full text link
    We describe a method of control of chaos that occurs in area-preserving maps. This method is based on small modifications of the original map by addition of a small control term. We apply this control technique to the standard map and to the tokamap

    Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas

    Get PDF
    We present a technique to control chaos in Hamiltonian systems which are close to integrable. By adding a small and simple control term to the perturbation, the system becomes more regular than the original one. We apply this technique to a model that reproduces turbulent ExB drift and show numerically that the control is able to drastically reduce chaotic transport

    Serrin’s type overdetermined problems in convex cones

    Get PDF
    We consider overdetermined problems of Serrin\u2019s type in convex cones for (possibly) degenerate operators in the Euclidean space as well as for a suitable generalization to space forms. We prove rigidity results by showing that the existence of a solution implies that the domain is a spherical sector

    Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land‐surface temperature observations

    Get PDF
    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp‐like pattern of the air temperature measured at high frequency. A SR‐based method to estimate sensible heat flux (HSR‐LST) requiring only low‐frequency measurements of the air temperature, horizontal mean wind speed, and land‐surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR‐LST assumes that the mean ramp amplitude can be inferred from the difference between land‐surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land‐surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR‐LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR‐LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR‐LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR‐LST and measured H were of about 55 W m−2. Thus, by using multitemporal thermal acquisitions, HSR‐LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one‐source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR‐LST method.This research was funded by project CGL2012‐37416‐C04‐01 and CGL2015‐65627‐C3‐1‐R (Ministerio de Ciencia y Innovación of Spain), CEI Iberus, 2014 (Proyecto financiado por el Ministerio de Educación en el marco del Programa Campus de Excelencia Internacional of Spain), and Ayuda para estancias en centros extranjeros (Ministerio de Educación, Cultura y Deporte of Spain)

    Detecting crop water status in mature olive groves using vegetation spectral measurements

    Get PDF
    Full spectral measurements (350-2500nm) at tree canopy and leaf levels and the corresponding leaf water potentials (LWP) were acquired in an olive grove of Sicily, at different hours of the day, during summer season 2011. The main objective of the work was to assess, on the basis of the experimental data-set, two different approaches to detect crop water status in terms of LWP. Specifically, using existing families of Vegetation Indices (VIs) and applying Partial Least Squares Regression (PLSR) were optimised and tested. The results indicated that a satisfactory estimation of LWP at tree canopy and leaf levels can be obtained using vegetation indices based on the near infrared-shortwave infrared (NIR-SWIR) domain requiring, however, a specific optimisation of the corresponding "centre-bands". At tree canopy level, a good prediction of LWP was obtained by using optimised indices working in the visible domain, like the Normalized Difference Greenness Vegetation Index (NDGI, RMSE=0.37 and R2=0.57), the Green Index (GI, RMSE=0.53 and R2=0.39) and the Moisture Spectral Index (MSI, RMSE=0.41 and R2=0.48). On the other hand, a satisfactory estimation of LWP at leaf level was obtained using indices combining SWIR and NIR wavelengths. The best prediction was specifically found by optimising the MSI (RMSE of 0.72 and R2=0.45) and the Normalized Difference Water Index (NDWI, RMSE=0.75 and R2=0.45). Even using the PLSR technique, a remarkable prediction of LWP at both tree canopy and leaf levels was obtained. However, this technique requires the availability of full spectra with high resolution, which can only be obtained with handheld spectroradiometers or hyper-spectral remote sensors

    Control of test particle transport in a turbulent electrostatic model of the Scrape Off Layer

    Get PDF
    The E×B{\bm E}\times{\bm B} drift motion of charged test particle dynamics in the Scrape Off Layer (SOL)is analyzed to investigate a transport control strategy based on Hamiltonian dynamics. We model SOL turbulence using a 2D non-linear fluid code based on interchange instability which was found to exhibit intermittent dynamics of the particle flux. The effect of a small and appropriate modification of the turbulent electric potential is studied with respect to the chaotic diffusion of test particle dynamics. Over a significant range in the magnitude of the turbulent electrostatic field, a three-fold reduction of the test particle diffusion coefficient is achieved

    Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach

    Get PDF
    A remote sensing-based approach to estimate actual evapotranspiration (ET) was tested in an area covered by olive trees and characterized by Mediterranean climate. The methodology is a modified version of the standard FAO-56 dual crop coefficient procedure, in which the crop potential transpiration, Tp, is obtained by directly applying the Penman-Monteith (PM) equation with actual canopy characteristics (i.e., leaf area index, albedo and canopy height) derived from optical remote sensing data. Due to the minimum requirement of in-situ ancillary inputs, the methodology is suitable also for applications on large areas where the use of tabled crop coefficient values become problematic, due to the need of corrections for specific crop parameters, i.e., percentage of ground cover, crop height, phenological cycles, etc. The methodology was applied using seven airborne remote sensing images acquired during spring-autumn 2008. The estimates based on PM approach always outperforms the ones obtained using simple crop coefficient constant values. Additionally, the comparison of simulated daily evapotranspiration and transpiration with the values observed by eddy correlation and sap flow techniques, respectively, shows a substantial agreement during both dry and wet days with an accuracy in the order of 0.5 and 0.3 mm d−1, respectively. The obtained results suggest the capability of the proposed approach to correctly partition evaporation and transpiration components during both the irrigation season and rainy period also under conditions of significant reduction of actual ET from the potential one
    corecore